
- 7 D-AI65 321 SOFTWARE METRICS FOR ADA(U) MARYLAND UNIV COLLEGE PRK 1/1
V R BASIL! 63 FEB 86

UNCLASSIFIED F/G 9/2 UL

I Eh1 h

4

L3.

- IImIIE.
1111. 1 251

"jJ _______.4 .

MICROCOPY RESOLUTION TEST CHART
NATInNAL RIIRFAt Of 1ANDA DS %964 A

N PROJECT FINAL REPORT' € February 3, 1986

Ln 1D . Contract
CD Title: Software Metrics for Ada
U ONR Contract No.: N00014-82-K-0225

Principal Investigator: Victor R. Basili
ONR Scientific Officer: Dr. R. Grafton

ll 2. Supmmary of.Work

"W -have monitored a software development project written in Ada by
integrating measurement into the software development process. iiw goal is to
identify areas of success and difficulty in learning and using Ada as a design and
coding language. The underlying process and the evolving product are measured,
and the resulting information characterizes this project's successes and failures.
It may be used to make recommendations about training, methodology, and
metrics to the Ada users community. This experience with data collection and

*. metrics will aid in the selection of a general set of measures and measurement
procedures for any software development project.

The project studied involved the redesign and reimplementation, at the Gen-
eral Electric Company, of a portion of a satellite ground control system originally
written in FORTRAN(Four programmers were chosen for their diverse back-
grounds and were given a month of training in Ada and software development
methodology. They designed the project using an Ada-like PDL although a pro-
cessor for the PDL was not available at that time. The design evolved into Ada
code which was processed by the NYU Ada/Ed interpreter. The design and cod-
ing phases of the project extended from April 1982 to December 1982. Some unit
testing of the project was done during the summer of 1983 using the ROLM com-

7' :piler; however, the entire system has not been tested.
We used a goal-directed data collection approach from the beginning. Goals

and objectives for the study were defined. Specific question and hypotheses were
associated with each goal. Data collection forms and procedures were developed
to address these questions. The forms and procedures were integrated into the
software development methodology. The final step of this approach involved
analyzing the data in order to answer the questions and either accept or reject
the hypotheses.

bLh -'.:"D Most recently, the data have been analyzed. All the data from the forms
was entered in a database as were the data gathered by a processor which parses
the design and code, checking for correct syntax and taking various measure-

IA. ments. Our conclusions are summarized below and elaborated upon in the techn-
__. ical report [Basili et al. 84] and the paper [Basili et al. 85] listed below. Further

study into tools and metrics specific to Ada will continue in a following project.

%:% %

[U % . rbu swv lj.

3. Significant Results
Although the project studied ended part way through development, the

results indicate what might happen in early stages of development in other pro-
jects. The data can be compared with the corresponding stages of other projects.
The results from this project may prevent others from making costly manage-
ment mistakes.

Learning Ada takes time. In this project it consumed 20% of the total
effort. That time must be included in any estimate of effort for early projects
using Ada. Training will probably have to be a continuing process as the team
members learn the finer points of the language.

Ada is more than syntax and simple examples. The underlying software
engineering concepts must be taught in conjunction with the support Ada pro-
vides for those concepts. Most programmers are not familiar with the methodolo-
gies developed in the seventies that Ada supports. Training in software engineer-
ing methodology and how to use it in the environment of a particular application
is an absolute necessity for the proper use of Ada.

We do not know how Ada should be used. Ideally, our understanding of the
software engineering concepts Ada supports would make the use of Ada natural.
However, many people learn by example, and we do not have many good exam-
ples of how Ada should be used. We do not know how and when to use excep-
tions, tasks, and generics. We need to study various alternatives and show how
they work with examples from various environment.

Design alternatives must be investigated. The design for this project was
functional and more like than unlike the earlier FORTRAN design. A group at
General Electric developed an object-oriented design for the same project. Nei-
ther of these approaches appears to be entirely appropriate. Just as a combina-
tion of top-down and bottom-up development is appropriate to many applica-
tions, a combination of functional and object-oriented design might well be most
appropriate. Only after we know which type of design, or combination thereof, is
best suited to the particular application can we teach people which design
approach to use. Without such training, programmers will rely on their experi-
ence with other languages and will probably produce functional designs.

Proper tool support is mandatory. This project was done without a
production-quality validated compiler. In addition to that very necessary tool, a
language-oriented editor, which could have eliminated 60% of the observed
errors, would have been desirable. This would have allowed the programmers to
focus their attention on the logic errors that undoubtedly remain in the design
and code. Data dictionaries, call structure and compilation dependency tools,
cross references, and other means of obtaining multiple views of the system would
have helped. A PDL processor with interface checks, definition and use relation
lists, and various metrics would also be helpful.

Some methodology must be followed for a project to be successful. The
methodology and tools to be used should be understood before the project begins.

4
% ,r

• • "2. *' ', €-' '° ' 'o'I - °
*

J . -.- ' • '.-. . , °* .' '.. - .,.o % . . N. ' " % -..-.2 , %

The effect of the lack of good tools is mentioned above. In addition, the PDL
was loosely defined until after design began. Effective design reading might have
caught many of the errors. Even if we wanted to test this project after a com-
piler became available, we would have needed to create a test plan after the
requirements were completed. However, that aspect of the methodology was
deemed unimportant. The language is only one aspect of the environment and
methodology. It cannot save a project in which the rest of the methodology is
ignored.

We believe that this project is atypical in that it was done before a compiler
was available and was not finished. However, it is typical in that training con-
sumed an enormous amount of effort and the programmers were not familiar with
the underlying software engineering concepts of Ada and that it might look like
the beginning of many projects. The learning curve in methodology is quite
large. As we study more projects that use Ada, we will learn how to teach it,
how to use it, and where we might make mistakes. Until then, we need to study
Ada and its use further.

* 4. Papers

J. Bailey, "Teaching Ada: A Comparison of Two Approaches," First
Washington Symposium on Ada Acquisition Management, ACM, Laurel, MD,
March 6, 1984.

J. Bailey, V. Basili, J. Gannon, E. Katz, E. Kruesi, S. Sheppard,
and M. Zelkowitz, "Monitoring an Ada Software Development Project," Ada
Letters II, 5, November 1982.

V. Basili, S. Chang, J. Gannon, E. Katz, C. Loggia Ramsey, N.
Panlilio-Yap, M. Zelkowitz, J. Bailey, E. Kruesi, and S. Sheppard, "Monitoring
an Ada Software Development Project," Ada Letters, Vol. IV, No. 2, September-

October 1984.

V. Basili and E. Katz, "Metrics of Interest in an Ada Develop-
ment," IEEE Workshop on Software Engineering Technology Transfer, Miami,
Florida, April 1983, pp. 22-29.

V. Basili, N. Panlilio-Yap, C. Loggia Ramsey, S. Chang, E. Katz,
' "A Quantitative Analysis of a Software Development in Ada," Computer Science

Technical Report, University of Maryland, 1984, UOM-1403.

[,-.II.

[h .. " "k

V. Basili, E. Katz, N. Panlillo-Yap, C. Loggia Ramsey, S. Chang,
"Characterization of a Software Development in Ada," IEEE Computer, Vol. 18,
No. 9, Sept. 1985, pp. 53-65.

J. Gannon, E. Katz, and V. Basili, "Characterizing Ada Programs:
Packages," The Measurement of Computer Software Performance, Los Alamos,
New Mexico, August 1983.

J. Gannon, E. Katz, and V. Basili, "Metrics for Ada Packages: An
Initial Study", in progress, 1984.

S. Sheppard, J. Bailey, and E. Kruesi, "Defining Metrics for Ada
Software Development Projects," Proceedings of Computer Science and Statistics:
15th Symposium on the Interface, Houston, Texas, March 1983.

Accession For

NTIS r
D TI C1T! ri

Unr n o . ,-
__

By-
Distribut ln/

Availability Codes
lAvail and/or-

Dist Special

I-

7..............................i:

K.

II
Ui

,

